>

最大似然估计

- 编辑:555彩票 -

最大似然估计

纯属青春娱乐片啊,而且娱乐也不够彻底,当出现坏蛋时,全街的人出现围观,当街看戏,真是不把坏人当人啊,这下蜘蛛真的变成卖艺小丑了,而且结局是让女一号死了(下一部估计是换女主角了),还让一个小孩出来挡犀牛。导演和编导都脑残,看结尾还是有续集啊,这个档期就是坑爹,只能看这个了,估计其它片更让人生气,再过10多天看《X战警:逆转未来》不知会如何?

在讨论最大似然估计之前,我们先来解决这样一个问题:有一枚不规则的硬币,要计算出它正面朝上的概率。为此,我们做了 10 次实验,得到这样的结果:[1, 0, 1, 0, 0, 0, 0, 0, 0, 1](1 代表正面朝上,0 代表反面朝上)。现在,要根据实验得到的结果来估计正面朝上的概率,即模型的参数 (p)((0 le p le 1))。

当然,对于投硬币这种问题,由于模型很简单,我们可以用大量实验来近似最终结果,不过,如果事件模型复杂一些,做大量的实验就显得不太现实。这个时候,用最大似然估计的思想,则可以通过较少的实验得出一个相对好的结果。本文就从这个简单的例子出发,对最大似然估计做一次简单的描述。

基本思想

555彩票官网,似然(likelihood),就是可能性的意思。所谓最大似然估计,顾名思义,就是根据最大的可能性对参数进行估计。那么什么是最大的可能性呢?对于上面那个投硬币的例子,扔 10 次硬币最可能出现的结果会是什么?最大似然估计认为,最可能出现的结果就是:[1, 0, 1, 0, 0, 0, 0, 0, 0, 1]。有人可能会纳闷,这不就是我们实验的结果吗?不错,最大似然估计有点类似于人类「先入为主」的思维。投 10 次硬币可能出现的情况有那么多,为什么偏偏我们的实验结果就是这样的呢?这是否意味着,这个结果出现的概率是最大的?

再举个例子(该例子改编自文末链接):两位猎人 A 和 B 一起外出打猎,一只野兔从两人面前窜过,两人同时开枪,结果 A 猎人射杀了野兔。如果要推测谁的枪法准,你是不是会「先入为主」地认为 A 猎人的枪法好?因为射杀兔子的可能情况有那么多种(可能是 B 射杀,也可能是 A、B 同时射杀),但偏偏发生的却是 A 射杀了兔子,那我们当然会倾向于认为 A 的枪法好一些。这种「先入为主」的思想,其实就是最大似然法的思想。简单地说,就是按照最可能的情况来评估事件。当然,这种思想多少存在误判的情况(比如,A 这次能射杀兔子纯属偶然),但随着实验次数增多,结果也会更加准确(如果两人多次狩猎,B 偶尔得手,但 A 频频得手,那 A 枪法好的可能性就更大了)。

回到硬币那个例子,同样的道理,我们认为,出现结果 [1, 0, 1, 0, 0, 0, 0, 0, 0, 1] 的可能性比其他结果要大。

本文由娱乐发布,转载请注明来源:最大似然估计